Basics of Derivatives
Derivative:
Let $y=f(x)$, then $$f'(x) = \frac{dy}{dx} = lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$
The Product Rule:
If $u=u(x)$ and v=v(x) and their respective derivatives exist,
$$\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}, (uv)' = u'v + uv'$$
The quotient rule:
$$\frac{d}{dx}(\frac{u}{v}) = \cfrac{(v\frac{du}{dx}-u \frac{dv}{dx})}{v^2}, (\frac{u}{v})' = \frac{u'v-uv'}{\Delta x}$$
The chain rule:
If $y=f(u(x))$ and $u=u(x)$, then $\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$
The generalized power rule:
$$\frac{dy^n}{dx} = ny^{n-1} \frac{dy}{dx}$$ for $$\forall n \neq 0 $$
Other Useful Eqquations:
$$a^x = e^{x \ln a} $$
$$\ln(ab) = \ln a \ln b $$
$$\lim{x \to \infty} \frac{\sin x}{x} = 1$$
$$\lim{x \to \infty} (1+x)^k = 1 + kx$$ for any $k$
$$\lim{\ln x \to x^r} = 0 $$ for any $ r > 0$
$$\lim{x \to \infty} x^r e^{-x} = 0$$ for any $r$
$$\frac{d}{dx} e^u = e^u \frac{du}{dx}$$
$$\frac{da^u}{dx} = (a^u \ln a) \frac{du}{dx}$$
$$\frac{d}{dx} \ln u = \frac{1}{u} \frac{du}{dx} = \frac{u'}{u}$$
'Study Note > Quantitative Methods' 카테고리의 다른 글
【Quantitative Methods】Time Value of Money (0) (0) | 2020.06.25 |
---|