본문으로 바로가기

In the last post, we went through the properties of estimators. This post contains a mathematical proof of two properties: Unbiasedness and Consistency

 

 

 

【Econometrics】Estimator

As "econometrics" means to "measure" "economics", our goal is to derive the best estimate on an economic relationship. Then, what is the "best" estimator? Properties of Estimator 1. Unbiased (불편;..

quant-curiosity.tistory.com

 

I. Unbiasedness

 

Assumption:

  • $X$ is a Random Variable ($RV$) that is $i.i.d$ (independent and identically distributed) with $E(X) = \mu$ and $V(X) = \sigma^2$.
    ($X\sim i.i.d.(\mu,\sigma^2)$)

 

Proof

 

$$
E(\bar{X}) = E(\frac{1}{N} \sum_{i=1}^N X_{i}) = \frac{1}{N} E(\sum_{i=1}^N X_{i}) =\frac{1}{N} \sum_{i=1}^N E(X_{i}) = \frac{1}{N} (N\mu) = \mu
$$

 

 

II. Consistency

 

Assumption:

Given $X\sim i.i.d. (\mu,\sigma^2)$ (unbiased), we need to show that $Var(\bar{X})\rightarrow 0$ as $N \rightarrow \infty$.

 

Proof

 

$Var(\bar{x}) = Var (\frac{1}{N} \sum_{i=1}^N X_{i})$

             $ = \frac{1}{N^2} Var(\sum_{i=1}^N X_{i})$

             $ = \frac{1}{N^2} [Var(X_1) + Var(X_2) + \cdots+Var(X_n) + 2Cov(X_1,X_2) + 2(Cov(X_1,X_3) + \cdots] $

             $ = \frac{1}{N^2}[Var(X_1) + Var(X_2) +\cdots+Var(X_n) + 0 + 0 +\cdots ] $  by independence 

             $ = \frac{1}{N^2}[Var(X_1) + Var(X_1) +\cdots+Var(X_1) + \cdots ] $  by identically distributed

             $ = \frac{1}{N^2} [NVar(X_1)] $

             $ = \frac{1}{N} [N\sigma^2] $

             $ = \frac{\sigma^2}{N}, $  which indeed converges to zero as $N$ goes to infinity