In the last post, we went through the properties of estimators. This post contains a mathematical proof of two properties: Unbiasedness and Consistency
【Econometrics】Estimator
As "econometrics" means to "measure" "economics", our goal is to derive the best estimate on an economic relationship. Then, what is the "best" estimator? Properties of Estimator 1. Unbiased (불편;..
quant-curiosity.tistory.com
I. Unbiasedness
Assumption:
- $X$ is a Random Variable ($RV$) that is $i.i.d$ (independent and identically distributed) with $E(X) = \mu$ and $V(X) = \sigma^2$.
($X\sim i.i.d.(\mu,\sigma^2)$)
Proof
$$
E(\bar{X}) = E(\frac{1}{N} \sum_{i=1}^N X_{i}) = \frac{1}{N} E(\sum_{i=1}^N X_{i}) =\frac{1}{N} \sum_{i=1}^N E(X_{i}) = \frac{1}{N} (N\mu) = \mu
$$
II. Consistency
Assumption:
Given $X\sim i.i.d. (\mu,\sigma^2)$ (unbiased), we need to show that $Var(\bar{X})\rightarrow 0$ as $N \rightarrow \infty$.
Proof
$Var(\bar{x}) = Var (\frac{1}{N} \sum_{i=1}^N X_{i})$
$ = \frac{1}{N^2} Var(\sum_{i=1}^N X_{i})$
$ = \frac{1}{N^2} [Var(X_1) + Var(X_2) + \cdots+Var(X_n) + 2Cov(X_1,X_2) + 2(Cov(X_1,X_3) + \cdots] $
$ = \frac{1}{N^2}[Var(X_1) + Var(X_2) +\cdots+Var(X_n) + 0 + 0 +\cdots ] $ by independence
$ = \frac{1}{N^2}[Var(X_1) + Var(X_1) +\cdots+Var(X_1) + \cdots ] $ by identically distributed
$ = \frac{1}{N^2} [NVar(X_1)] $
$ = \frac{1}{N} [N\sigma^2] $
$ = \frac{\sigma^2}{N}, $ which indeed converges to zero as $N$ goes to infinity
'Study Note > Econometrics' 카테고리의 다른 글
【Econometrics】Ordinary Least Square (OLS) (0) | 2020.07.16 |
---|---|
【Econometrics】The Fitted Line : Estimation of Beta (0) | 2020.07.10 |
【Econometrics】The Fitted Line : Basic Idea (0) | 2020.07.10 |
【Econometrics】Data Generating Process (0) | 2020.07.10 |
【Econometrics】Estimator (0) | 2020.06.27 |
【Econometrics】Derivatives (0) | 2020.06.17 |
【Econometrics】Data Types (0) | 2020.06.17 |
【Econometrics】Econometric Questions (0) | 2020.06.17 |